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Abstract On Fig. 1, the value 2.7823 A should read 2.7283 A. 
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Abstract 
Certain basic matters in a recent synchrotron-radiation study 
[Rossmanith (1993). Acta Cryst. A49, 80-91] and an allied 
study which developed a new peak-width formula [Rossmanith 
(1992). Acta Cryst. A48, 596-610] are questioned. These 
matters concern the mode of combination of certain components 
which determine the one-dimensional profile shape of Bragg 
reflections and the functional form of the wavelength dispersion 
dependence on the Bragg angle of the sample crystal and that 
of a monochromator crystal where the respective crystal axes 
are parallel. 

radiation convergent on c comes from a monochromator crystal, 
M, and corresponds to a wavelength band, AA. In an earlier 
publication, Rossmanith (1992; hereafter R92) introduced 
an additional component, called the 'particle-size effect' in 
R93, and denoted by e. By incorporating this component 
with the wavelength-dispersion component, a new peak-width 
formula was derived in R92 (non-monochromator case) and 
in R93 (monochromator case). The modes of combination 
of components in R92 and R93 and the derivation of the 
functional form of the wavelength dispersion in R93 differ 
significantly from those associated with earlier published works 
and, therefore, they warrant comment. 

1. Introduction 
A recent synchrotron-radiation study by Rossmanith (1993; 
hereafter R93) dealt with the various individual components 
which combine to determine the one-dimensional profile shape 
of Bragg reflections from a small specimen crystal, c, as 
the Bragg angle of the crystal, 0c, changes. The synchrotron 
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2. Identification of the components in diffraction space and 
their mode(s) of combination (non-monochromator case) 

To identify the various components and their contribution to 
the shapes of one-dimensional profiles, there is considerable 
advantage in approaching the situation from a two-dimensional 
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viewpoint, such as Aw,/120 space (Mathieson, 1982) since 
it effectively 'deconstructs' the one-dimensional distribution. 
Awe is the differential angular displacement of c (and hence 
of the reciprocal lattice about the origin) in respect of a given 
reflection and A20c is the corresponding differential angular 
displacement of a beam diffracted from the specimen crystal. 
(To refer to A0~ when one means Awe is misleading.) The 
one-dimensional profile, I(Aw~), corresponds to an integration 
across A20~ (associated with the 'wide' aperture of the 
detector). 

For a given reflection, each component distribution has a 
well defined locus in Aw, A20 space, Fig. l(a). One can 
therefore identify the main individual components, namely, 
the specimen crystal mosaic distribution,/.t (terminology as in 
Mathieson, 1982; # = r/in R92, R93) (locus parallel to the Aw 
axis), the source-emissivity distribution, a (locus at 45 ° to the 
Aw and /120 axes), and the wavelength distribution, A [locus 
at arctan (1/2) to the /120 axis], all in respect of the ~-scan 
mode. If the loci of two components are parallel, then they 
will be combined by convolution. If the loci are non-parallel, 
they have to be combined either by cross-multiplication or by 
convolution (see Mathieson, 1984; Mathieson & Stevenson, 
1993). When the components in/1w,/120 space are projected 
onto one dimension, /1w (say), their distributions all have 
to be combined by convolution, see Discussion in Mathieson 
& Stevenson (1993). This corresponds to the basic approach 
for synthesizing (modelling) one-dimensional profiles presented 
by Alexander & Smith (1962) (cf Stokes, 1948) and utilized 
subsequently by many authors over the last three decades, a 

recent example being the work of Destro & Marsh (1993). 
For the non-monochromator case, the dependence of the 
wavelength-dispersion component, IAwal, versus tan 0c is 
shown in Fig. 2(a). 

3. The distinction between scan range and profile width 

In R92 (and R93), the widths of profile peaks are taken as 
full width at half-maximum (FWHM). The mode of combining 
the FWHM of the various components to determine the peak 
width, A0h, is specified as addition. Thus, p. 600 in R92 'The 
peak width AOh is therefore given by the angle P~ OPt'. It is 
obvious from Fig. 3(d) that 

A0h = 62 + 6 -- 61 + 77. (6a)' 

On p. 601, it is stated 'In Fig. 4, the peak width calculated 
with (6a) and (6b) respectively are compared with experimental 
values. The full width at half-maximum (FWHM) values for 
the Cu Kal component have been estimated...'. See also Fig. 
4 and its caption. 

In respect of these matters, there appears to be confusion 
in R92 (and R93) between the mode of combining components 
which is appropriate to establish the width of the rocking curve 
(scan range) and that which is appropriate to establish the 
width of the profile at some proportion of its peak maximum, 
usually half. 

The scan range, Sc (Zlw), is determined by the outer limits 
(Lt) of the individual components and these are combined by 
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Fig. 1. Diagram in Atv, A20 space, with terminology as in Mathieson 

(1982), of (a) the loci of the mosaic distribution,/z (= r/in R92, R93), 
the source-emissivity distribution, tr, and the wavelength distribution, 
)~. (b) Superposition of the particle-size effect, e, on the points of the 
mosaic distribution,/.t (= ~/), to indicate their combined distribution 
(dashed line) representing the inner morphology of the specimen 
crystal. 
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Fig. 2. Variation of the modulus of the angular contribution of the 

wavelength dispersion, IA~o~l, as the Bragg angle Oc changes. (a) 
In the non-monochromator case, plotted against tan 0c. (b) In the 
monochromator case, plotted against t = tan Oc/tan OM. The full 
lines derive from Mathieson (1985a, b) and intersect the [Aoaxl axis 
at the respective values of AOM. Two possible values of ~tOM are 
shown, for (i) 0.0017 and (ii) 0.0022 °. The dashed line corresponds 
to the data presented in Fig. 5 of R93. 
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addition as in the following equation. 

Sc (Aw) = Lt [f~(Aw)] + Lt [f~(Aw)] + Lt [f¢(Aw)] 

+ Lt [f,7(Aw)] + Lt [f,(Aw)], (A) 

where the components are the wavelength (A), source emissivity 
(a), crystal size (c), mosaic spread (7/) and the 'particle-size 
effect' (e) introduced i n / 0 2  a n d / 0 3 .  

Relationship (A) is in accord with the (total) width of the 
rocking curve given by Amdt & Willis (1966), pp. 174, 267, 
and also in International Tables for Crystallography (1992). 

The width at half-maximum (FWHM) of the profile, 
I(Aw),  depends upon the distributions, f~ (A~o), of the various 
individual components and their mode of combination. The 
accepted mode of combination for the one-dimensional profile, 
I(Aw), is by convolution as indicated in 

Z(A~) = A ( A ~ ) ,  fo(A~),  f~(A~) ,A(La~) ,A(A~ ), (B) 

according to Alexander & Smith [1962; equations (1) and (2)]. 
If it were the case that every component was Gaussian in shape, 
then the FWHM of the derived distribution would correspond 
to the square root of the sum of the squares of the FWHM 
of the components. 

An appropriate illustration of the considerable difference 
between the results derived from applying the two operations 
is by reference to the original example given by Alexander & 
Smith (1962). The angular limit widths at the base of the four 
distributions, given in Fig. 11 there, add up to 1.8 ° which, 
therefore, is the full scan range necessary to encompass the 
contributions of the four components, see Fig. 12. The FWHM 
of the distribution, I(Aw), in Fig. 12 derived by convolution 
of the four distributions is 0.345 ° . 

4. The component e 

In /02  and R93, Rossmanith introduced the additional 
component, the 'particle-size effect' denoted by e (cf. Wilson, 
1949, p. 4). e = 1/r where r is the radius of an ideally perfect 
crystal (or of crystallites composing the macrocrystal). This 
component, e, is one aspect of the inner morphology of the 
specimen crystal, namely the size of the crystallites. Another 
aspect is the angular (mosaic) distribution, 7/, of the crystallites. 
Obviously, the 'particle-size effect' applies in respect of all 
points of the mosaic distribution. If one accepts I(Aw) as given 
in (B) above, there is no reason to differentiate the treatment 
of e and r/ in respect of their combination with the other 
components. So, in the process of combining components, cf. 
Alexander & Smith [1962; equation (1)], these two components 
can be combined by convolution to provide a distribution which 
represents the overall inner morphology of the specimen, see 
Fig. l(b), outer limit shown by the dashed line. 

In /02  and /03  however, Rossmanith treats e differently 
from 77. e is combined with the wavelength band to derive 
geometrical relationships given by equation (2b) in /02  and 
equations (6b) and (6c) in /03,  whereas 7/ is combined 
additively in equation (5) i n / 0 2  and equations (6a) and (7a) 
in /03. 

Two points arise: (1) The reasons for following this 
procedure instead of the well established procedure expressed 
in (B) are not discussed by Rossmanith. (2) Neither of the 
combinative (essentially additive) procedures applied to e or to 
7/in R92 a n d / 0 3  is appropriate to the derivation of FWHM. 
So comparison of the FWHM of profiles modelled on the 
Rossmanith procedure with FWHM of experimental profiles 

is liable, at the very least, to lead to non-realistic physical 
parameters.* 

5. Identification of the wavelength dispersion 
in Aw,z~20 space (monochromator case) 

Where a monochromator, M, is involved and the axis of 
M is parallel to that of c, the wavelength dispersion of 
M and that of c interact (Mathieson 1985a, b; hereafter 
M85a, b). In Aw, A20 space, the wavelength dispersion of 
M corresponds to a fixed vector (--AOM,--AOM) [see 
equations (1) and (2) in M85a], which may also be given as 
[ ( -  AA / A) tan 0 M ,  (-- A,~ / ,~ ) tan 0 M ]. The wavelength disper- 
sion of c corresponds to a vector, origin at (--AIOM,--AOM), 
of length (5)l/2(AA/A)tan0c, with slope arctan (1/2) to 
the ,420 axis. The combination of these two results in a 
vector which, in the parallel region, rotates anticlockwise 
with increase in 0~, being antiparallel to the Aw axis when 
tan Oc/tanOM = (1/2) and parallel to the ,420 axis when 
t an0~ / t an0M = 1, see Fig. 4 in M85a. In the antiparallel 
region, it rotates clockwise with increase in [-0~[ with no 
special conditions arising. The dependence on 0c of the 
wavelength-dispersion component, [Awa 1, is shown versus the 
dimensionless variable t -- tan 0c / t an  0 M in Fig. 2(b) for two 
values of [AOM [, the intercept on the Aw axis.t Note that the 
difference between the non-monochromator case (Fig. 2a) and 
the monochromator case (Fig. 2b) is that the point of inversion 
is displaced from Oc -- 0 ° to 0¢ -- 0u. 

Wavelength-dispersion component i n /03  

The wavelength-dispersion component in R93 is recorded 
in Fig. 5 as the dependence of [Aw~[ (given as FWHM) on 
0c calculated for a series of wavelengths from 0.3 to 2.2 A. 
All curves make a zero intercept on the [Awx[ axis at 0c = 
0 °. This is despite the statement in the figure caption that 6tryst 
(which is effectively [AOM [, see Fig. 4 in tO3) is a measurable 
non-zero quantity [see equations (6a) and (7a)]. The data in 
Fig. 5 i n / 0 3  correspond therefore to the dependence depicted 
by the dashed line in Fig. 2(b). 

From the data for FWHM given in Fig. 5 i n / 0 3 ,  one may 
deduce, for A -- 0.3 A, that, at 0~ -- 45 °, AA/A is equivalent 
to 0.035 °. Therefore, for 0u = 0c = 2.74 °, (AA/A) tan0u  = 
(AA/A) tan0c -- 0.0017 ° = A0M (FWHM). If f =  0.75 (Table 
2a in R93), then the base width (Fig. 3 in /03)  is 0.0022 °. 
Using these values, one can indicate in Fig. 2(b) how the two 
values of law,,[ vary with t, i.e. IZlw~l cx I t -  1 I. 

[AOM[ constitutes a constant factor which displaces the 
whole curve in the antiparallel region; compare the dashed line 

* A referee has suggested that it might be useful to address the 
question 'Are the two aspects of the inner morphology of the crystal, 
namely the size and orientation of the crystallites, separable by diffraction 
techniques, including analysis of the wavelength dependence?'. As 
Wilson (1949) observes (p. 4, equation 3), the crystallite-size effect, 
e , has a A/cos0 dependence. By contrast, the orientation effect, rh 
if isotropic, has neither A nor 0 dependence in angle space. Realistic 
estimates of the individual components should, therefore, be capable of 
extraction, particularly in Aw, A20 space, from analysis of experimental 
data over a range of 0 at one wavelength or investigation at different 
wavelengths (the latter readily attainable with synchrotron radiation). 
This does not, of course, modify the fact that, in any given observation 
of reflection shapes, the two components are effectively combined by 
convolution. 

t The sign allotted to t depends on the convention chosen, see 
Mathieson & Stevenson, 1993. 
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with the lower full line in Fig. 2(b). It may be pointed out 
that the intercept at 0c = 0 °, i.e. t = 0, can only be zero if 
(,4A/A) -- 0, which contradicts the basis of the model in Fig. 4 
of R93. Recognition and estimation of this component, [,40M[, 
is therefore advisable as a fundamental step in establishing the 
wavelength-dispersion component for (a) determining the scan 
range and (b) the modelling of one-dimensional profiles of 
Bragg reflections when one is aiming at careful single-crystal 
synchrotron-radiation studies. 

In respect of the non-zero status of [,40,x[ at 0¢ = 0 °, 
reference may be made to Willis (1960), which deals with a 
somewhat similar situation involving an extended-face crystal 
rather than a small specimen crystal (see also Mathieson, 1988). 

6. Mosaic distribution 

Nearly 20 years ago, Boehm, Prager & Bamea (1974) 
demonstrated experimentally with Si that the structure (inner 
morphology) of a ground spherical single crystal corresponded 
to a 'perfect' core and an 'imperfect' outer skin. Subsequently, 
Le Page & Gabe (1978) used this model to refine structural 
parameters from ground spherical crystals. This approach was 
tested in respect of three crystals. Application of this approach 
requires, in principle, at least three parameters, two to describe 
the mosaic distributions and a weight factor for the relative 
amounts of the two components. 

In R93, a simpler approach is taken in that only one 
parameter, 77, is allowed to represent an average mosaic 
distribution and that is derived [equation (13) in R93] by 
averaging the fit of measured FWHM with FWHM calculated 
according to equations (6a), (6b) and (6c) in R93. If the 
application of equations (6a), (6b) and (6c) is not strictly 
valid, see §§3 and 4 above, then further steps based on these 
equations become questionable. 

It would be more direct to establish mosaic-distribution 
estimates from experimental measures rather than mathematical 
operations involving a number of probably interacting 
parameters. As is indicated by Fig. l(a), direct estimate in 
,40,, ,420 space of even a limited number of reflections could 
yield useful information on the distribution of/z (= 77). See, for 
example, the fragment distribution shown in Mathieson (1982) 

and the anisotropic distributions in Mathieson & Stevenson 
(1986). 

In the concluding remarks in R93, Rossmanith points to 
'varying - and therefore unknown - mosaic structure' and 
links this with the 'difficulty of obtaining integrated intensities 
with sufficient accuracy using synchrotron radiation...'. There 
is no reason to imply that this information concerning mosaic 
structure is difficult to achieve. It is possible, if time- 
consuming, to establish reasonably detailed information on 
mosaic distributions using ,40.,, ,420 techniques (see references 
above). 

I am most grateful to my colleagues Drs A. W. Stevenson 
and S. W. Wilkins for their patience in discussions and for 
valuable comments on the text as it developed. I am also 
grateful to an anonymous referee for the suggestion to clarify 
§4 further. The author is, however, solely responsible for 
statements made in this communication. 
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Restructuring of the IUCr editorial office 

Following the promotion of Mr Michael Dacombe from 
Technical Editor to Executive Secretary, it was consid- 
ered an opportune time to restructure the editorial of- 
fice to reflect better the greater variety of work now 
carded out and to clarify the responsibilities of the 
staff. 

Mr Peter Strickland has been appointed as Managing Editor 
with overall responsibility for both the technical editing and 
the centralized checking. Mrs Sue King has been appointed 
as Technical Editor. Dr Amanda Berry has been appointed 
as Assistant Technical Editor with special responsibility for 
the centralized checking. There are three Senior Editorial 
Assistants and six Editorial Assistants. Mr Brian McMahon 
is the Research and Development Officer and his assistant is 
Dr M. Hoyland. The total number of graduate staff in the 
editorial office is 14. 


